
The Wisconsin PASS Project

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau,
Ben Liblit, Miron Livny, Michael Swift

University of Wisconsin, Madison

Storage System Reliability

Goals
Study: How disks fail
• Latent sector errors [Sigmetrics 07]
• Corruption [FAST 08]

Study: How & why systems fail
• Model checking [FAST 08]
• Pointer corruption [DSN 08]
• Error propagation [FAST 08]

Develop: New ways to cope with failure
• I/O Shepherding [SOSP 07]
• Declarative FS Checking [OSDI 08]

Storage Design
Model Checking

The Problem
RAID protection schemes are complex
• Identity info (logical, physical)
• Block, sector, parental checksums
• Disk scrubbing
• Write verify

Systems use different combos of above
• Systems from NetApp, Dell, Hitachi, etc.

What does a given scheme protect?

Model Checking
Automatic checking
• Use search to see how designs

react to different types of failure

Example faults
• Lost writes
• Torn writes
• Corruption

Output:
• “Proof” of design correctness or

example of hole in scheme

Example: Block checksums +
Scrubbing

A B C D E F

start clean

Disk x
Error

FLOST (x) | FMISDIR (x)

Parity
Error

FLOST(P) | FMISDIR (P)

Disk x
Torn
Write

FTORN (x)

Parity
Torn
Write

FTORN(P)

Disk x
Corrupted

FCORRUPT (x)

Parity
Corrupted

FCORRUPT(P)

Disk x
LSE

LSE(Dx)

Parity
LSE

LSE(P)

WADD (x+)

WSUB (x+)

Polluted
Parity

S | WADD (!x)

Corrupt
Data

R(x)

S | WADD ()

W(x+)
R(x)

S | R(x) | WADD () | WSUB (x+)

S | W()

S | R(x) | WADD () | WSUB (x+)

S | W()

S | R(x) | WADD () | WSUB (x+)

S | W()

Results [details in FAST ’08]

Analyzed eight real designs
• From industry and literature

Found design flaws in all eight
• Wrong sequence of faults leads

to data loss or unavailability
• General problem: Parity Pollution

New technique: Version mirroring
• Overcomes pollution thru additional state

Error Propagation

The Problem
Problem: Lost Errors
• Low-level generates error (EIO)
• Somewhere before it gets reported,

file system loses the error

Causes many problems
• Can’t tell if operation worked
• File system itself can’t detect/recover

How to find where these occur?

The Approach: EDP
Static source code analysis
• Look through source code for places

where error codes are lost

Built in CIL framework (from UCB)
• Error generation: Return value or arg
• Constructs channels:

Flow of errors back through call graph
• Label channel complete or broken

Example
int sync_blockdev (block_device *) {
 int ret = 0, err;
 ret = filemap_fdatawrite();
 err = filemap_fdatawait();
 if (!ret) {

 ret = err;

 return ret;
 }
}

int journal_recover (journal *) {
 int err;
 …
 sync_blockdev(); // ERROR IGNORED!
 …
 return err;
}

ext3

reiserfs

IBM JFS

NFS Client

SGI XFS

Summary [details in FAST ’08]

Static Analysis
• Show how basic error codes flow
• Currently: 34 basic error codes

Target systems
• 51 Linux file systems
• 3 storage drivers

Results
• Roughly 10k function calls
• More than 10% of calls are problematic

Declarative
File System Checking

The Problem
Too much C code
• As long as we build systems this way,

they will always have bugs

Different approach: Higher-level
• Fewer lines of code to describe system

Target domain: File system checking
• Important and complex code

(tens of thousands of lines of C code)

Our Approach: SQCK
SQCK (“squeak” for SQL-based FSCK)
• Load file system metadata into tables
• Run SQL queries over metadata,

perhaps fixing problems
• Store metadata back into file system

Lots of challenges
• Simplicity
• Performance
• Flexibility

Example Query
Check for out-of-range indirect block

SELECT X.*
FROM ExtentTabl X, SuperBlkTabl S
WHERE S.copyNum=1 AND
 X.Type=INDIRECT_POINTER AND
 (X.Start < S.firstBlock OR
 X.End >= S.lastBlock)

Results [details in OSDI ’08]

Simplicity
• Roughly 1k lines of SQL to implement

most of e2fsck
• Ordering of checks/repairs an issue

Performance
• Comparable to e2fsck (usually)

Flexibility
• Can change policies more easily

(it’s declarative!)

Impact

Impact
Publications

Open-source
• Found hundreds of bugs in ext, Reiser, XFS,

and other file systems
• Many now fixed (some during presentation!)
• Some design influence on next-gen FS’s

Industrial
• Led to re-design of storage protection

scheme in RAIDs

People
Current students

• Lakshmi Bairavasundaram (Ph.D. --> NetApp)
• Haryadi Gunawi (Ph.D.)
• Cindy Rubio (Ph.D.)
• Abhishek Rajimwale (Ph.D., maybe)
• Andrew Krioukov (Undergraduate --> Berkeley)
• Nitin Agarwal (Ph.D.)

Former students
• Meenali Rungta (Google), Shweta Krishnan

(Cisco), Arini Balakrishnan (Sun)

Collaboration with many@NetApp, Schroeder@Toronto

Conclude

Conclusions
Analysis of disk failures
• Good first steps
• New devices on horizon

Analysis of systems
• Everywhere we look there are problems
• Starting to understand how to measure

reliability (model checking, static analysis)
• Still hard to do this in a general way

Building reliability in by design
• Just the beginning (SQCK)

Want to read more?
www.cs.wisc.edu/adsl

Thanks to our sponsors:

